

Installation effects from pile drilling – experiences from case studies

Påldag 2019, 16. mai Göteborg Einar John Lande, NGI

Forskningsrådet NGI ISINTEF INTEN Norconsult ISINTEF INTENDER SKANSKA

Agenda

➢ Remedy

- Case studies
- Model test drilling in sand

Remedy

- R&D project funded by the Norwegian Research council and the 18 partners.
- Sequal of BegrensSkade I (2012-2015)
- Project period 1. September 2017 21. August 2022
- Budget: 21 mill. NOK
- **Five work packages:**
 - WP 1 Drilling for installation of piles and tie-back anchors
 - WP 2 Deep excavations and foundations
 - WP 3 Hydrogeological methods, drainage and grouting
 - WP 4 Vibrations due to construction activities
 - WP 5 Risk assessment and management

Background

Problem:

Damage + costs

Aim: Reduce risk

PERIOD | 2017 - 2022 COUNTRY | NORWAY

6000

Project | WP 1: Drilling for installation piles and anchor tie-backs

Develop model for estimating settlements caused by pile and tie-back anchor drilling

What are the main aims in WP1?

- 1. Guidelines for selecting drilling methods and procedures for different ground conditions
- 2. Method to estimate ground settlements caused by drilling

Case studies

E18 Knapstad – Retvet Hobøl bridge

E18 Knapstad – Retvet, Hobøl bridge

🞥 REMEDY

Drilling method and procedure

Steel tube piles Ø711x12.5 mm

DTH air hammer (senkhammer)

Combined air + water flushing:

5-10 bar in clay and 10-20 bar in moraine and rock

Penetration rate 70-100 cm/min in clay Water flushing:

250 l/min in clay and 350 l/min in silt and silty sand, use of air minimized.

Robit drill bit

Server Street REMEDY

Pore pressure measurements

Ullevål pedestrian bridge

Server Street St

Ullevål pedestrian bridge

Steel bridge recently finished

Founded on reinforced steel tube piles drilled into bedrock

Dry crust over soft to medium stiff marine silty clay with some layers of sand.

Small artesian pressure above bedrock

Illustration: Efla

📚 REMEDY

Drilling method and procedure

Steel tube piles Ø610x12.5 mm

DTH air hammer (senkhammer) with double-tubed RC system

Combined air + water flushing: Typical 10-12 bar

Penetration rate 25-50 cm/min in clay

Robit drill bit - safety flow

d'

📚 REMEDY

Instrumentation close to VS-4 and NØ-5

ΔU = -100 kPa 400 350 ΔU = -60 kPa 300 PORETRYKK (kPa) 520 120 120 120 100 50 P42 P41 P43 P51 P53 P51 P54 Akse VS-1, VS-2 og VS-3 P51 P52 P52 <u>P44</u> 0 07.03.18 0.00 21.02.18 0.00 28.02.18 0.00 14.03.18 0.00 21.03.18 0.00 28.03.18 0.00 - PZ 4 d = 6 m - PZ 3 d = 16 m TID -PZ 2 d = 26 m -PZ 1 d = 37 m

Ground settlements

So what happened?

- Likely combination of
 - Drilling penetration rate 2-4 min/m)
 - Flushing (10-12 bar)
 - Sensitive and quick clay, silt and sand above bedrock

Follo line project, Oslo

Pile drilling with DTH water hammer

🞥 REMEDY

Plan pile drilling

PZ installed close to line B

Pore pressure measurements

Conclusions so far

Main installation effects "confirmed"

- Pore pressure
- Loss of soil mass

Function of penetration rate, flushing media and pressures, ground conditions, drill system, workmanship

Air flushing \rightarrow increased risk of settllements

Field data

inherent uncertainties

ground conditions, workmanship, simultaneous construction process,...

🞥 REMEDY ir

image: embraceablemind.com

Model test

controlled environment

qualitative and/or quantitative information

... but soil behaviour is rather complex

image: https://boyslife.org/hobbies-projects/funstuff/143815/conduct-7-sweet-science-experiments-with-candy/

Hypothesis

field data

image: https://sylviamoessinger.wordpress.com/2011/10/28/the-differencebetween-theory-and-practice/

🞥 REMEDY

Physical model

setup – programme

Water flushing Flow 1.5 l/min 2.5 mm/sec

🞥 REMEDY

Test programme (stage 1)

Field & experimental data

- deepen understanding
- industry guidance
- prevent damage

image: https://www.clebaby.com/clebaby-cleveland-doulaservice-blog/product-review/kiinde-twist-bottle-feeding-system

https://www.ngi.no/remedy

Takk for oppmerksomheten!

