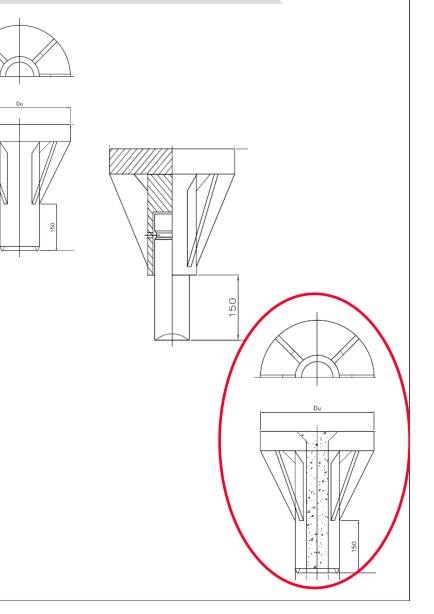
Påldag 09 Gøteborg 7. mai 2009 Analyser av en pålsko Statens vegvesen, Grete Tvedt NTNU, Arne Aalberg

Statens vegvesen

Project description

- In the Norwegian Roads Administration's projects the pile shoes for point-bearing piles are mainly hollow with a steel dowel installed.
- standardization of this type of pile shoes
- reduce procurement cost
- reduce the risk of failures and rejected piles.
- Participants in this research project: NTNU, Aas-Jakobsen, Geovita, Ruukki, Statens vegvesen,


Planned working process

- 1. Pile shoe dimensions based on experience
- 2. Static FEM-analysis
- 3. Dynamic FEM-analysis
- 4. Laboratory test
- 5. Full scale test
- Step 1 2 are performed, and step 3 is in progress.
- After step 1 and 2 we had the following question: Why the experience and analysis shows large differences in weld size?
 - Ruukki practical experience: Welding ribs to dowel $a_{min} = 7 \text{ mm}$
 - Static FEM-analysis result:
 Welding ribs to dowel: a = 15 mm

Three different types of rock shoes

- Rock shoe with structural steel dowel
- Rock shoe with hardened steel dowel
- Rock shoe with structural steel dowel with hole

Calculated for the present pile type: • Pile pipe dimension: Ø 813mm t = 14,3 mm Hollow dowel • Pile shoe dimensions based on experience and Static FEM-analysis Ansys: - Design load $F_{c:d} = 5000 \text{ kN}$ - Characteristic capacity: $R_{c:k} = F_{c:d} \times \gamma_t = 5000 \times 1.6 = 8000 \text{ kN}$ • Dynamic FEM-analysis Abaqus: $- R_{c:k} = 10\ 000\ kN$

Materials and stress

- Steel grade and quality: S355J2
- Minimum yield strength $f_{s:y}$ (R_{eH}) depends on thickness (t) (ref. NS-EN 10025 / 10210):
- t<16 mm: f_{s;y} = 355 MPa
- 16< t <u><</u> 40 mm : f_{s;y} = 345 MPa
- 40< t <u><</u> 63 mm : f_{s;y} = 335 MPa
- 63< t <u><</u> 80 mm : f_{s;y} = 325 MPa

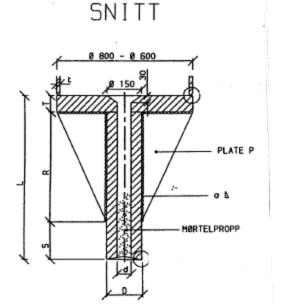
The permitted stress level during driving is exceeding $f_{s;v}$ with 25 % (Peleveiledningen:1991).

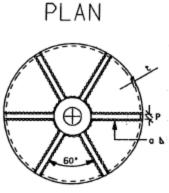
The permitted stress after installation is less than or equal to $\mathbf{f}_{\text{s};\text{y}}$

Dowel area dimensions based on experience

- Norwegian pile handbook (Peleveiledningen:2005) recommends pile shoe dimensions based on experience.
- We roughly calculated necessary steel area to estimate dowel area before FEM-analysis

$$R_{c;k} = 8000 \ kN \le 1,25 \cdot N_d$$


$$R_{c;k} \le A_{spiss} \cdot \frac{f_{s;y}}{\gamma_m} \cdot 1,25$$


$$A_{spiss} \ge \frac{1}{1,25} \cdot R_{c;k} \cdot \frac{\gamma_m}{f_{s;y}} = \frac{1}{1,25} \cdot 8000 \cdot \frac{1,1}{335} \cdot 10^3 = \frac{21015 \ mm^2}{1000}$$

- Outer diameter dowel: D = 203 mmInner diameter dowel: d = 113 mmDowel Area: $A_{dowel} = 22 337 \text{ mm}^2$
- Ruukki's recommendation: Area_{dowel} = Area_{pipe} = 35 617 mm²

Pile shoe dimensions based on experience

Peleveiledningen2005: Norwegian Piling handbook

Dimension during installation:

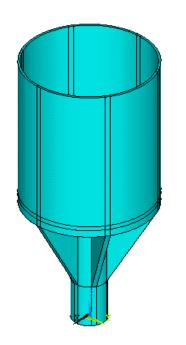
Steel pipe:

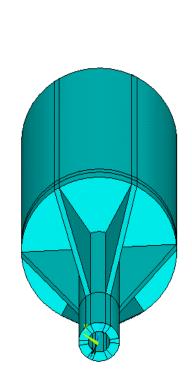
Ø= 813 mm, t = 14,3 mm

Pile shoe:

Outer diameter:	D= 203 mm
Inner diameter:	d = 113 mm
Thickness bottom plate	T = 80 mm
Height reinforcing rib	R = 600 mm
Length pipe	S = 300 mm
Total length pile shoe	L = 980 mm
Thickness reinforcing rib	P = 30 mm

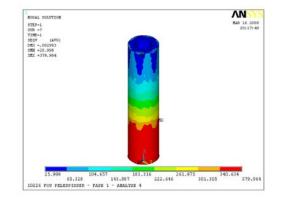
Dimension after installation:

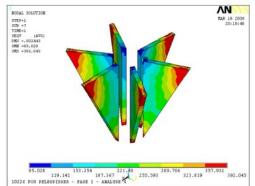

•corrosion rate 0,025 mm/year per exposed side

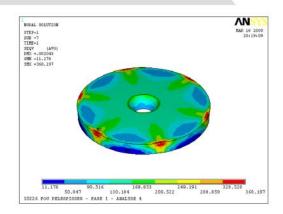

•pile life 100 years

Statens vegvesen

Static FEM-Calculation Geometric model


- FEM-analysis calculated by the program ANSYS
- Element type SOLID92
- Welds are not included in the model
- 1 m steel pipe


5 different analysis


Analysis	Condition	Load	Analysis type
1	Pile driving Centric point bearing	8000 KN	Elastic
2	Pile driving Eccentric point bearing	8000 kN (exceeds break load)	Elastic
3	Permanent Centric point bearing	5000 KN	Elastic
4	Pile driving Centric point bearing	8000 kN	Elastoplastic
5	Pile driving Eccentric point bearing	4460 kN (2 mm vertical compression)	Elastoplastic

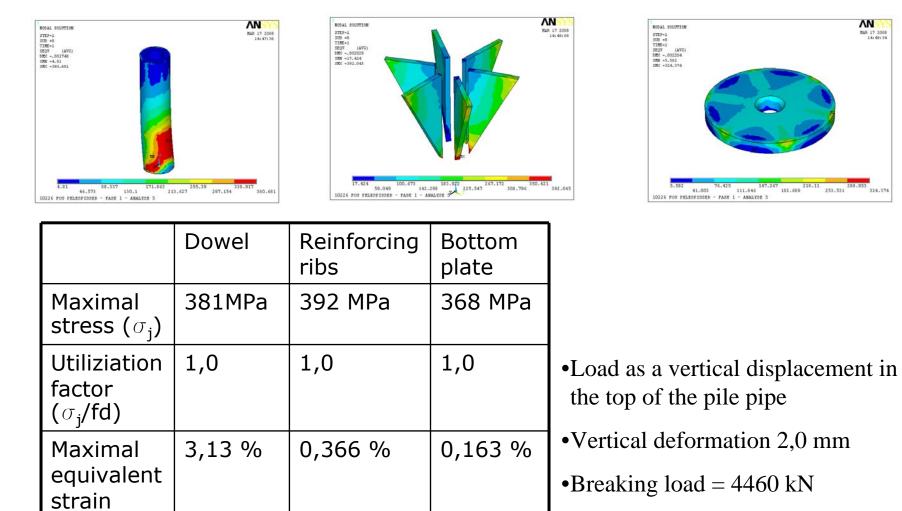
Analysis 4 – driving pile – load 8000 kN elastoplastic analysis

Average stress dowel

Average stress reinforcing ribs

Average stress bottom plate

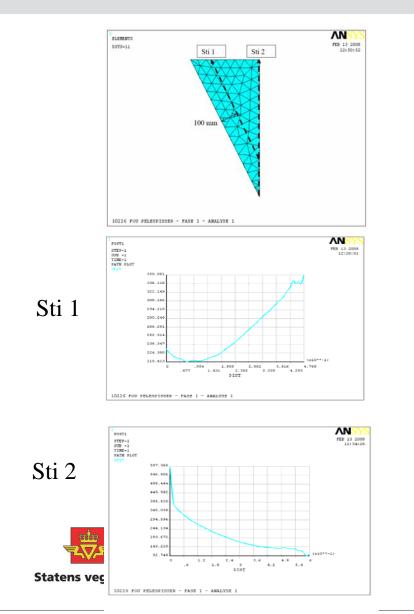
C C			
	Dowel	Reinforcing ribs	Bottom plate
Maximal stress ($\sigma_{ m j}$)	381MPa	392 MPa	368 MPa
Utilization factor ($\sigma_{\rm j}$ /fd)	1,0	1,0	1,0
Maximum equivalent strain	0,285 %	0,338 %	0,308 %

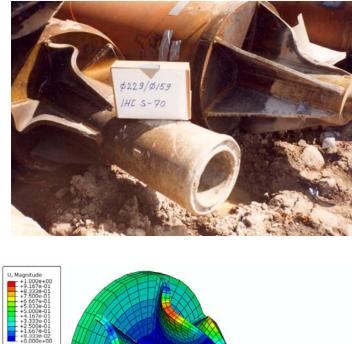


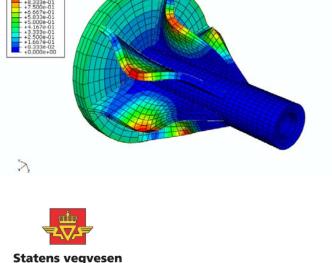
• Vertical deformation 2,98 mm

Analysis 5 – driving pile with eccentric load 4460 kN – elastoplastic analysis

ANS


253.531


Statens vegvesen


Weld design NS3472:2001 pnkt 12.6.2 og 12.6.3

- Average stress in the weld from strain path 2.
- Welding ribs to dowel: a = 15 mm
- Welding ribs to bottom plate: Butt weld
- Ruukki practical experience: Welding ribs to dowel a_{min} = 7 mm
- Weld with a = 15 mm costs 6 times more to produce than weld with a = 6 mm
- Why the different results?
 - Different dowel dimension
 - Correct design and calculation connection in ANSYS?

Buckling reinforcing ribs (NS3472:2001 pnkt 12.3.2.1)

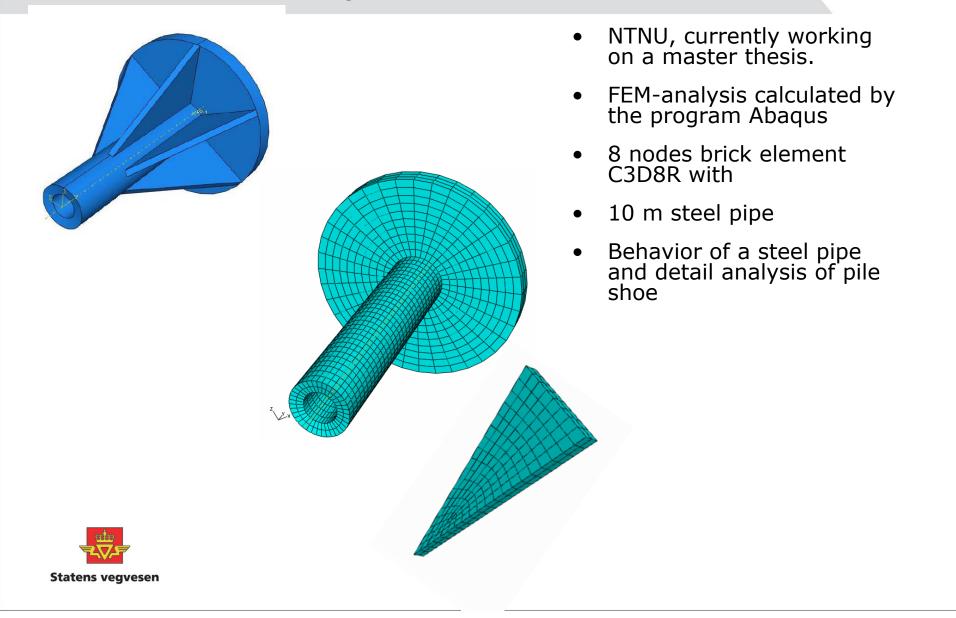
Static analysis

- $F_{buckling} = 8000 \text{ kN}$
- Reinforcing rib's thickness
 P = 30 mm
- Buckling stress $f_{kd} = 280 \text{ MPa}$
- Reinforcing rib's stress $f_{pl} = 275 \text{ MPa}$
- Utilization factor: $\mu = 0,98$

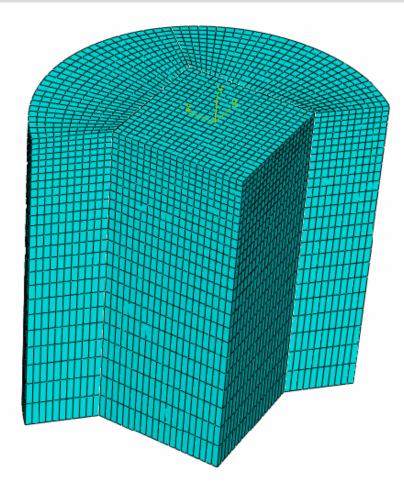
Dynamic analysis

Axial load:

- $F_{buckling} = 155\ 000\ kN >> Fy$
- Buckling caused by bending load

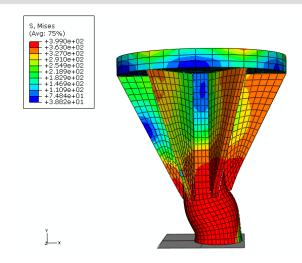

Dynamic analysis Buckling of the pile pipe

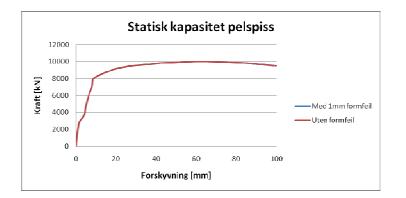
#1 Global knekking – Skalering: 1000	#2 Global knekking – Skalering: 1000
Knekklast: 14.565kN	Knekklast: 14.565kN
#3 Lokal knekking – Skalering: 400	#4 Lokal knekking – Skalering: 400
Knekklast: 115.459kN	Knekklast: 115.459kN
666	
#9 Lokal knekking – Skalering: 400	#10 Lokal knekking – Skalering: 400
Knekklast: 136.219kN	Knekklast: 136.219kN


- Pile pipe dimensions:
 - Length: 10 m
 - Diameter: 813 mm
 - Thickness: 14,3 mm
- The dynamic analysis result in some samples of buckling forms on the pile pipe before the detail analysis of the pile shoe.

Dynamic FEM-Calculation Geometric model of detail analysis pile shoe

Dynamic FEM-Calculation – Geometric model of the rock

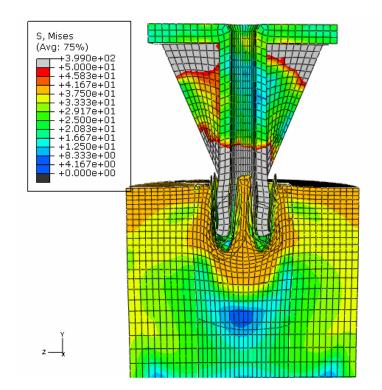



Statens vegvesen

 Rock mass is modeled as a elastic-plastic material in Abaqus

- 1 m high and 1m diameter rock model
- Small-meshed elements close to the rock surface: 20 x 20 mm.

Dynamic FEM-Calculation Preliminary results of the analysis



- Deformation of pile shoe
- Static load abaqus: $R_{c;k} = 10\ 000\ kN$
- Tensile stress increase with strain rate

Dynamic FEM-Calculation Preliminary results of the analysis in colour plot

Further work:

- Effects of different rock qualities
- Effects of drilling hole before penetration
- Evaluate load of steel parts

Thanks to NTNU, Arne Aalberg and Andreas Kildal Forseth for the use of preliminary results.

